
Context and Techniques for Hybrid

Relightable 3D Gaussian Rendering

1



Table of Contents

Necessary Reads..................................................................................................... 4

3D Gaussian Splatting Notes...................................................................................4

Introduction................................................................................................................................ 4

Related Work...............................................................................................................................4

Overview......................................................................................................................................4

Differentiable 3D Gaussian Splatting......................................................................................... 5

Optimization with Adaptive Density Control of 3D Gaussian....................................................5

Fast Differentiable Rasterizer for Gaussians.............................................................................. 5

Implementation, Results, and Evaluation.................................................................................. 5

Discussion and Conclusions........................................................................................................5

Relightable 3D Gaussian Notes............................................................................... 6

Introduction................................................................................................................................ 6

Relightable 3D Gaussians........................................................................................................... 6

Point-based Ray Tracing............................................................................................................. 7

Experiments.................................................................................................................................7

3D Gaussian Ray Tracing: Fast Tracing of Particle Scenes Notes............................ 8

Introduction................................................................................................................................ 8

Related Work...............................................................................................................................8

Background................................................................................................................................. 8

Method........................................................................................................................................ 8

Experiments and Ablations.........................................................................................................9

Applications.................................................................................................................................9

Traditional 3D Polygon Models............................................................................. 10

Physically Based Rendering (PBR).........................................................................11

The Rendering Equation............................................................................................................ 11

Bidirectional Reflectance Distribution Function (BRDF)........................................................ 12

Fresnel Function........................................................................................................................13

Diffuse Function........................................................................................................................ 13

Specular Function......................................................................................................................14

Normal Distribution Function.................................................................................................. 14

Geometry Shadowing Function.................................................................................................14

Metallic Rendering Special Case............................................................................................... 15

Expanded PBR Rendering Equation......................................................................................... 15

Raytracing.............................................................................................................15

Bounding Volume Hierarchy (BVH) Construction...................................................................16

Primary Ray Generation............................................................................................................16

Ray-Box Intersection................................................................................................................. 17

Ray-Triangle Intersection......................................................................................................... 18

Ray-Gaussian Intersection........................................................................................................ 19

2



Glossary................................................................................................................20

Resources..............................................................................................................21

3



Necessary Reads

Please read these papers; they are fundamental to what we are trying to accomplish.

3D Gaussian Splatting for Real-Time Radiance Field Rendering: this original 3D Gaussian paper

introduced this novel rendering technique. Read this paper to gain a foundational

understanding of how they generate 3D Gaussian models. The rasterization rendering technique

should be ignored as we are using raytracing.

Relightable 3D Gaussian: Real-time Point Cloud Relighting with BRDF Decomposition and Ray

Tracing: this paper is basically what our entire project is based on. They offer a way to decode

Gaussian albedo into PBR material properties and a Gaussian raytracing algorithm.

3D Gaussian Ray Tracing of Particle Scenes: this NEW paper (published Oct. 10) expands on the

ideas of 3DGS by contributing a unique, optimized GPU-accelerated ray tracing algorithm for

semi-transparent particles.

3D Gaussian Splatting Notes

Introduction

The current problem with Neural Radiance Fields (NeRFs), the present technique for

high-quality novel-view synthesis, is its long training and rendering times. 3D Gaussians aim to

solve these problems. They are initialized from sparse point clouds produced from Structure

fromMotion (SfM), which are then optimized by tuning Gaussian parameters (3D position,

opacity (𝛼), anisotropic covariance, and spherical harmonics (SH) coefficients) and density. 3D
Gaussian’s are incredibly fast to rasterize.

Related Work

SfM enabled novel view synthesis from a series of photos by generating a point cloud.

Multi-view stereo (MVS) uses the geometry to guide the reprojection and blends the input

images to create a full 3D reconstruction. Deep learning techniques use Convolution Neural

Networks (CNNs) to estimate blend weights. NeRFs and importance sampling of volumetric

ray-marching improved quality but resulted in high computational costs. Research has focused

on incremental speed improvements using spatial data structures, regularization, and smaller

Multi-Layer Perceptions (MLPs). 3D Gaussians are used as opposed to traditional point-based

rendering to avoid issues of aliasing and holes.

Overview

Generate a point cloud with SfM from a set of images of a static scene. A set of 3D Gaussians is

created for each point in the cloud containing a position, covariance matrix, and opacity.

4

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://nju-3dv.github.io/projects/Relightable3DGaussian/
https://nju-3dv.github.io/projects/Relightable3DGaussian/
https://gaussiantracer.github.io/#supp_video


Gaussian parameters and density are tuned to better fit the image. Rasterizer does

alpha-blending of ordered splats.

Differentiable 3D Gaussian Splatting

3D Gaussians are chosen as the primitive for easy manipulation, easy projection into 2D space,

and to avoid estimating normals from SfM points. 3D Gaussians are defined by a position

(mean) μ and a full 3D covariance matrix Σ. Projection to 2D for rendering is done via

transformation using the Jacobian of the projective transformation. Instead of directly

optimizing covariance matrices, they are presented as combining a scale and rotation matrix to

ensure the covariance matrix stays positive and semi-definite.

Optimization with Adaptive Density Control of 3D Gaussian

3D Gaussian optimization tunes their parameters, positions, opacity (α), covariance, and

spherical harmonics (SH) coefficients for color, and adaptively controls their density. The scene

is rendered, and values are changed through Stochastic Gradient Descent (SGD). An initial

sparse set of Gaussians is generated from SfM. Gaussians under a certain opacity are removed.

Regions with high positional gradients are densified by cloning or splitting. To prevent

unnecessary increases in Gaussian density, Gaussians are periodically culled.

Fast Differentiable Rasterizer for Gaussians

Use a tile-based rasterizer to pre-sort primitives for an entire image to avoid per-pixel sorting.

The screen is split into 16x16 tiles where 3D Gaussians are culled against the view frustum and

each tile. Each Gaussian is assigned a key that combines view space depth and tile ID. Gaussians

are then sorted by their keys using GPU Radix sorting. During rasterization, one thread is

launched per tile. Each pixel accumulates color and α values until a saturation (α) level is

reached.

Implementation, Results, and Evaluation

Implementation was in Python using the PyTorch framework and wrote custom CUDA kernels

for rasterization. NVIDIA CUB sorting routines were used for the fast Radix sort. An interactive

viewer for measuring frame rates was built off of the open-source SIBR. A smaller image

resolution is used initially, gradually increasing over several hundred iterations for optimization

stability. SH coefficients optimization is sensitive to the lack of angular resolution (taking

inside-out captures). To fix this, the zero-order SH component (diffuse color) is optimized first,

and then after 1000 iterations, the next band of SH is introduced until all bands are represented.

Discussion and Conclusions

This paper establishes the first real-time rendering solution for radiance fields with comparable

quality to high-cost methods while maintaining competitive training and rendering times.

5



Relightable 3D Gaussian Notes

Introduction

3D Gaussian Splatting (3DGS) surpasses all previous novel view synthesis solutions but cannot

reconstruct a scene under different lighting conditions. Due to 3DGS rasterization, ray tracing’s

shadowing, and light reflectance require using ad hoc solutions (e.g., shadow maps,

screen-space reflections, etc.). This paper proposes a novel 3D Gaussian point-based rendering

that achieves physically based relighting. To make 3D Gaussians relightable, the following

attributes are added: normal, BRDF properties, and incident light information. Incident light is

split into a global environment map and an indirect incident light field. A novel ray tracing

method based on bounding volume hierarchy (BVH). Regularizations, including constraints on

depth distribution, smoothness priors, and a lighting regularization, are introduced to mitigate

material-lighting ambiguity during optimization.

Relightable 3D Gaussians

3D Gaussian points are defined as:

In the first step of the 3DGS rendering process, 3D Gaussians are projected to 2D Gaussians on

the image plane. 3D spatial means are accurately projected to 2D means, but the 2D covariance

matrices are approximated by:

The pixel color is derived by alpha blending N ordered 2D Gaussians from front to back:

In practice, Σ is parameterized as a unit quaternion (q) and a scaling vector (s). View-dependent

color ( ) is represented through a set of Spherical Harmonics (SH). Therefore, the 3D

Gaussian parameters is:

A normal attribute ( ) is added to each 3D Gaussian. You cannot use the spatial mean of a 3D

Gaussian as a conventional point and make normal estimations based on the local planar

6



assumption because the Gaussian point cloud is sparse and (more importantly) Gaussian points

are not perfectly aligned with the object’s surface. Therefore, is initialized to a random vector

via back-propagation and optimized. The pixel depth is estimated by the depth of all Gaussians

along a ray. Additional densification on the gradient of normals is used to improve normal

recovery in thin regions. A constraint minimizes the uncertainty of depth distribution to better

align Gaussian points with the object’s surface.

The PBR color is computed for each 3D Gaussian, and then alpha-blend them together to

generate the PBR image. PBR properties are assigned to each Gaussian to make them

relightable. To sample incident light at a Gaussian from direction is represented as:

The indirect light term is parameterized by 3-level SH, and the direct light term

is parameterized as a 16x32 environment map. Therefore, the Gaussian is

parameterized as:

Light Regularization is used to mitigate the materials-lighting ambiguity.

Point-based Ray Tracing

The novel point-based ray tracing approach is built upon the Bounding Volume Hierarchy

(BVH). The binary radix tree is used as the algorithm for constructing a binary tree. Since

Gaussians are semi-transparent, all Gaussian intersections must be considered. The ray travels

from the camera center and accumulates transmittance as it passes through Gaussians until it

reaches zero. To speed up ray tracing, there’s an early return if transmittance drops below a

certain threshold .

The optimization process is divided into two stages. First, a 3D Gaussian point cloud with

normal vectors is optimized. Then, the per-Gaussian visibility is pre-computed. Second, the

geometry of 3D Gaussians is locked, and optimization is focused on the material and lighting

parameters.

Experiments

The training is broken up into two stages. The first stage optimizes the proposed normal

gradient-based densification, which consists of 30,000 iterations. The second stage optimizes

the materials and lighting parameters, which consists of 10,000 iterations.

7



3D Gaussian Ray Tracing: Fast Tracing of Particle

Scenes Notes

Introduction

The critical contributions of the work are a GPU-accelerated ray-tracing algorithm for

semi-transparent particles (Gaussians), an improved optimization pipeline for ray-traced,

particle-based radiance fields, and generalized Gaussian particle formulations to reduce the

number of intersections.

Related Work

To deal with secondary lighting effects (indirect lighting), the Relightable Gaussian paper uses

spherical harmonics to encode occlusion information. Initial visibility rays determine occlusion,

but ray tracing is restricted to the training phase. The Relightable Gaussian paper uses

Axis-Aligned Bounding Boxes (AABBs), which are 3x slower than the stretched icosahedrons

used in this paper. This paper also introduces a unique technique for tracing semitransparent

particles (as most ray tracing is highly optimized for rendering opaque surfaces).

Background

Kernel function of a 3D Gaussian particle:

μ = particle’s position

R = rotation matrix

S = scaling matrix

Use a spherical harmonics function to determine the opacity coefficient (which depends on the

view direction).

Method

Simply intersecting a ray with the AABB around each particle is fast, but a diagonally stretched

Gaussian particle will cause the traversal to evaluate many false-positive intersections. Stretched

Polyhedron Proxy Geometry (icosahedron) bounding volumings were the most performant.

Volumetric rendering requires accumulating the contribution of particles along the ray in a

sorted order. Their renderer gathers the next k (where k = 16 gives good results) particles,

maintains a sorted buffer of their indices, then iterates through the sorted array of primitive

hits, retrieves the corresponding particle for each, and renders them according to the following

equation:

8



The process repeats, tracing a new ray from the last rendered particle to gather the next k

particles. The process terminates once all particles intersecting the ray are processed or when

enough particle density is intersected.

Rather than using standard 3D Gaussian kernels, described by the following equation:

,

degree-2 generalized Gaussian particles (GG2), described by the following equation:

n = 2,

defines denser particles which reduces the number of intersections and increases the

performance by a factor of 2.

Experiments and Ablations

Use degree-2 generalized Gaussian particles, a density learning rate of 0.09 during optimization,

and optimizing with incoherent rays in a batch size starting after 15,000 training iterations.219

Evaluation scenes used: four indoor (room, counter, kitchen, bonsai), three outdoor (bicycle,

garden, stump), and two large outdoor scenes (truck and train).

The best bounding primitive was icosahedron: a twenty-faced regular polyhedron mesh.

The best tracing algorithm was their proposed method. Their method + 2x2 tiled tracing, where

tracing one ray per 2x2 tile but still evaluating appearance per pixel, akin to tile-based

rasterization, produced slightly worse visual results with significantly better performance.

Applications

They maintain an extra acceleration structure consisting only of mesh faces for additional

inserted geometry. When casting each ray, they first cast rays against inserted meshes. If a mesh

is hit, render all particles only up to the hit and compute a response based on the material. For

refractions and reflections, this means continuing tracing along a new redirected ray according

to the laws of optics. For non-transparent diffuse meshes, we compute the color, blend it with

the current radiance, and then terminate the ray.

9



Traditional 3D Polygon Models

A series of connected triangles approximate the shape of real-life 3D objects. Triangles are used

because it is the minimum number of points to describe a plane, a.k.a. face, in three dimensional

space.

Each vertex, i.e., points of a triangle, holds its (x,y,z) positional data. Each vertex can have an

arbitrary number of attributes. These vertex attributes get linearly interpolated across the face of

the triangle. For example, you can assign the colors red, green, and blue to the corners of a

triangle.

If we wanted to overlay an image across the triangle, we would give each vertex a UV coordinate

that indexes the image.

10



Physically Based Rendering (PBR)

Physically-based rendering follows three rules: energy conservation, the microfacet model, and

the Fresnel Effect.

A microfacet model is where object surfaces at a microscopic level are composed of jagged faces

that perfectly reflect light; surface misalignment results in the surface appearing rough at a

macroscopic level. The less rough a surface is, the more it perfectly reflects light.

The Fresnel Effect is the phenomenon where the lower the viewing angle on a surface is, the

better the reflection is.

The Rendering Equation

The rendering equation calculates the light (radiation waves in the visible spectrum) we see at a

particular point. This equation states that the radiance at a point equals the sum of the emitted

radiance at the point and the sum of all the incoming radiance reflected at a single point.

11



L(x,w) is your outgoing light at a single point, x, given your viewing direction w. Le (x,w) is the

emitted light. Li(x,w’) is your incoming light value. This would be the color for directional lights,

but you must account for light falloff for point and spotlights.

The ‘cosθ’ portion of the integral is Lambert’s Law, which describes the relationship between the

light direction, denoted by L, and a surface’s normal, denoted by N. Light gets stretched across a

larger area as it approaches more grazing angles. The surface gets darker as L and N become

perpendicular, and vice versa. This behavior is encoded by the cosine of the angle between L and

N, calculated by dot(L, N).

Bidirectional Reflectance Distribution Function (BRDF)

The fr(w’→w) portion of the integral is called the Bidirectional Reflectance Distribution

Function (BRDF), which describes how much light gets reflected off a surface.

12



The BRDF equation is the sum of the diffuse and specular lighting, while kd and ks represent

what fraction of the lighting types contribute. Ks = Fresnel Function, and, to conserve energy, kd

= 1 - ks.

Fresnel Function

The following is Schlick’s Fresnel approximation, often used for the Fresnel function. The

half-way vector is the halfway point between the view and the light vector. The base reflectivity

of a dielectric material is a constant value of 0.04 (most dielectric materials have a based

reflectivity between 2%-5%), while the base reflectivity of a metal is the albedo.

Diffuse Function

The Lambertian Diffuse BRDF is used for the diffuse function, simply the albedo of your object

divided by ℼ.

13



Specular Function

The Cook-Torrance (a.k.a. Torrance-Sparrow) equation is commonly used as the specular

function. The normal distribution function is represented by D, G represents the geometry

shadowing function, and the fresnel function is represented by F.

Normal Distribution Function

The industry's most common normal distribution function is the GGX/Trowbridge-Reitz model.

Geometry Shadowing Function

Again, the Schlick-Beckman model is the most common function used for geometry shadowing.

You must multiply the G(L) by G(V) to get your G value.

14



Metallic Rendering Special Case

Metals only reflect their specular highlight. Therefore, simply multiply the kd variable by one

minus the metallic value to render metallic materials.

Expanded PBR Rendering Equation

This puts the rendering equation in terms of color, roughness, metalness, and normal direction.

Raytracing

Path Buffers:

path paths[viewport.width * viewport.height * pathsPerPixel]

pathId pathsContinue[paths.size() + 1], where the last index contains the count

pathId pathsEnd[paths.size() + 1], where the last index contains the count

15



Bounding Volume Hierarchy (BVH) Construction

Construct a binary radix tree for the 3D Gaussian models (4.1 Relightable Gaussian paper).

Axis-Aligned Bounding Boxes (AABBs) are the industry standard choice for Bounding Volume

Hierarchies (BVHs) due to their ease of use and performance. Surface Area Heuristic (SAH) is

the most popular method for constructing highly performant BVHs. It uses a cost model based

on the surface areas of the bounding boxes and the number of primitives within them to

determine where to split using the following equation:

Primary Ray Generation

For a simple pinhole camera, convert pixel index coordinates , where(𝑥, 𝑦)
, into a point on the𝑥 ∈ {0, 1, 2,  ...  ,  𝐼𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ − 1},  𝑦 ∈ {0, 1, 2,  ...  ,  𝐼𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡 − 1}

image plane in camera coordinates, where , using the following𝑥 ∈ [− 1,  1],  𝑦 ∈ [− 1, 1]
equations:

,𝐼𝑚𝑎𝑔𝑒𝑃𝑙𝑎𝑛𝑒
𝑥

= 2𝑥+1
𝐼𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ − 1

𝐼𝑚𝑎𝑔𝑒𝑃𝑙𝑎𝑛𝑒
𝑦

= −2𝑦−1
𝐼𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡 + 1

Wemust linearly interpolate to account for the image’s aspect ratio such that:𝑥

,𝑥 ∈ [− 𝐴𝑠𝑝𝑒𝑐𝑡𝑅𝑎𝑡𝑖𝑜,  𝐴𝑠𝑝𝑒𝑐𝑡𝑅𝑎𝑡𝑖𝑜]

16



where 𝐴𝑠𝑝𝑒𝑐𝑡𝑅𝑎𝑡𝑖𝑜 =  𝐼𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ
𝐼𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡

Using the following equation:

,𝐼𝑚𝑎𝑔𝑒𝑃𝑙𝑎𝑛𝑒
𝑥

= 2𝑥+1
𝐼𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ − 1( ) * 𝐼𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ

𝐼𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡 = 2𝑥+1
𝐼𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡 − 𝐴𝑠𝑝𝑒𝑐𝑡𝑅𝑎𝑡𝑖𝑜

Let represent the distance between the camera and the image plane (along the z-axis). It is𝑑
expected to keep the focal length equal to 1 for simplicity. NOTE: Unity uses a left-handed, y-up

coordinate frame. To account for the Field Of View (FOV), we need to scale ,𝐼𝑚𝑎𝑔𝑒𝑃𝑙𝑎𝑛𝑒
𝑥

appropriately with the following:𝐼𝑚𝑎𝑔𝑒𝑃𝑙𝑎𝑛𝑒
𝑦

,𝐼𝑚𝑎𝑔𝑒𝑃𝑙𝑎𝑛𝑒
𝑥

= 2𝑥+1
𝐼𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡 − 𝐴𝑠𝑝𝑒𝑐𝑡𝑅𝑎𝑡𝑖𝑜( ) * 𝑑 * 𝑡𝑎𝑛( 𝐹𝑂𝑉

2 )

,𝐼𝑚𝑎𝑔𝑒𝑃𝑙𝑎𝑛𝑒
𝑦

= −2𝑦−1
𝐼𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡 + 1( ) * 𝑑 * 𝑡𝑎𝑛( 𝐹𝑂𝑉

2 )

𝐼𝑚𝑎𝑔𝑒𝑃𝑙𝑎𝑛𝑒
𝑧

= 𝑑

We can then transform this point into world coordinates using a camera-to-world matrix

multiplication. The camera-to-world matrix is defined by a look-at rotational matrix, denoted by

, then a translation, denoted by , ( ).𝑅 𝑇 𝑇 × 𝑅

Ray-Box Intersection

We can define an AABB by two points of its corners:

A point described as:

, lies inside the AABB if and only if , i.e.:𝑝
𝑚𝑖𝑛

< 𝑝 < 𝑝
𝑚𝑎𝑥

can be described using the ray’s parametric equation:𝑝

17



where is the ray’s origin and is the ray’s direction. Therefore, we can determine where the ray𝑜 𝑑
intersects an axis-aligned plane with the following:

The intersection of three segments is the following:

Where if , then there is no intersection.𝑡
𝑚𝑖𝑛

> 𝑡
𝑚𝑎𝑥

Ray-Triangle Intersection

Möller-–Trumbore is the industry standard ray-triangle intersection algorithm. The intersection

point on a triangle ( ) can be described with the following equation:𝑃

𝑃 =  𝑤𝐴 + 𝑢𝐵 + 𝑣𝐶

Where , , and are the vertices of the triangle. We can𝑤 + 𝑢 + 𝑣 =  1 𝑤, 𝑢, 𝑣 ∈ [0, 1] 𝐴, 𝐵, 𝐶
rewrite this equation using only two two coefficient terms, .𝑢, 𝑣

𝑃 = (1 − 𝑢 − 𝑣)𝐴 + 𝑢𝐵 + 𝑣𝐶
⇒ 𝑃 = 𝐴 + 𝑢𝐵 − 𝑢𝐴 + 𝑣𝐶 − 𝑣𝐴

⇒ 𝑃 = 𝐴 + 𝑢(𝐵 − 𝐴) + 𝑣(𝐶 − 𝐴)

can equivalently be described using the ray’s parametric equation:𝑃

𝑃 = 𝑂 + 𝑡𝐷

where is the ray’s origin and is the ray’s direction. Using substitution, we can rewrite our𝑂 𝐷
original equation to the following:

𝑂 + 𝑡𝐷 = 𝐴 + 𝑢(𝐵 − 𝐴) + 𝑣(𝐶 − 𝐴)
⇒ − 𝑡𝐷 + 𝑢(𝐵 − 𝐴) + 𝑣(𝐶 − 𝐴) = 𝑂 − 𝐴

18



⇒ [− 𝐷  (𝐵 − 𝐴)  (𝐶 − 𝐴)][𝑡  𝑢  𝑣]𝑇 = 𝑂 − 𝐴

We can use Cramer’s rule, which states:

, and scalar triple product rule, which states:

, to solve for , giving us:[𝑡  𝑢  𝑣]𝑇

Ray-Gaussian Intersection

3D Gaussians are essential fuzzy, blob-like points in space (think of a blurry ellipsoid or cloud).

Since a Gaussian is semi-transparent, you cannot calculate the exact point of intersection.

Instead, you find a point along the ray where the Gaussian’s influence peaks by calculating

where the ray comes closest to the center of the Gaussian, given its spread and orientation. For

each Gaussian a ray passes through, it reduces the ray's transmittance. The ray stops once its

transmittance has dropped below a certain threshold (4.1 Relightable Gaussian paper).

19



Glossary

Term Definition

Face

The surface of a triangle.

Fresnel Effect

The change in how much light reflects off a

surface is based on the viewing angle.

Microfacet Model

A way to approximate a surface as a collection

of small, individual faces called microfacets.

Normal

A directional vector that is perpendicular to

the face of a triangle.

Novel View Synthesis

Generate new images of a scene or object

from a specific viewpoint when the only

available information is pictures taken from

different perspectives.

UV Coordinates

2D coordinates map a texture onto a 3D

model’s surface.

Vertex

The point where two edges of the triangle

meet.

20



Resources

● 3D Gaussian Splatting for Real-Time Radiance Field Rendering

● 3D Gaussian Splatting Resources (GitHub)

● Adobe The PBR Guide

● Computer Graphics Tutorial - PBR (Physically Based Rendering)

● Demystifying Floating Point Precision

● Optimizing a Ray Tracer (by building a BVH)

● Physically Based Rendering (book)

● Relightable 3D Gaussian: Real-time Point Cloud Relighting with BRDF Decomposition

and Ray Tracing

● Understanding Radiance (Brightness), Irradiance, and Radiant Flux

● Möller-Trumbore Algorithm

● Fast, Branchless Ray/Bounding Box Intersections, Part3: Boundaries

● Generating Camera Rays with Ray-Tracing

● How to Create Awesome Accelerators: The Surface Area Heuristic

21

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://github.com/MrNeRF/awesome-3D-gaussian-splatting
https://www.adobe.com/learn/substance-3d-designer/web/the-pbr-guide-part-1#:~:text=The%20F0%20range%20for%20most,and%20insulators%20a%20bit%20later.
https://www.youtube.com/watch?v=RRE-F57fbXw&t=307s
https://blog.demofox.org/2017/11/21/floating-point-precision/
https://www.youtube.com/watch?v=C1H4zIiCOaI&t=281s
https://www.pbr-book.org/4ed/contents
https://nju-3dv.github.io/projects/Relightable3DGaussian/
https://nju-3dv.github.io/projects/Relightable3DGaussian/
https://www.energetiq.com/technote-understanding-radiance-brightness-irradiance-radiant-flux
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection.html
https://tavianator.com/2022/ray_box_boundary.html#boundaries
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-generating-camera-rays/generating-camera-rays.html
https://medium.com/@bromanz/how-to-create-awesome-accelerators-the-surface-area-heuristic-e14b5dec6160

